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1

Laboratory Experiments with 

an Expectational Phillips Curve

Jasmina Arifovic and Thomas J. Sargent

1. INTRODUCTION

This paper describes experiments with human subjects in an environment that pro-
vokes the time-consistency problem of Kydland and Prescott (1977). There is an
expectational Phillips curve, a single policymaker, who sets inflation up to a 
random error term, and members of the public, who forecast the inflation rate. The
policymaker knows the model. Kydland and Prescott consider a one-period model
and describe how the inability to commit to an inflation policy causes the policy-
maker to set inflation to a Nash (that is, time-consistent) level that is higher than it
would be if it could commit. With repetition (see Barro and Gordon 1983), the
availability of history-dependent strategies multiplies the range of equilibrium out-
comes. Some are better than the one-period, time-consistent one; others are worse.

Some commentators, including Blinder (1998) and McCallum (1995), assert
that in practice, the time-consistency problem can be solved through an unspecified
process that lets the monetary authority “just do it,” in the terminology of an
American sports shoe advertisement. Here, “it” is to choose the optimal or Ramsey
target inflation rate. Although reputational macroeconomics provides no support
for “just do it” as a piece of policy advice,1 the range of outcomes predicted by that
theory is big enough to rationalize such behavior. The large set of outcomes 
motivated us to put human subjects inside a Kydland–Prescott environment.

We paid undergraduate students to perform as policymakers and private 
forecasters in a repeated version of the Kydland–Prescott economy. A single 
policymaker repeatedly faced N forecasters, whose average forecast of inflation
positioned an expectational Phillips curve.

Inspired by the theoretical literature, we ask the following questions: (1)
Emergence of Ramsey: Is there a tendency for the optimal but time-inconsistent
(Ramsey), one-period outcome to emerge as time passes within an experiment? 
(2) Backsliding: After a policymaker has nearly achieved Ramsey inflation, does
inflation ever drift back toward Nash inflation? (3) Focal points: Are there other

1 The theory identifies multiple systems of expectations to which the policymaker wants to conform. It provides
no guidance about how to switch from one system of expectations to another.
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“focal points” besides the Nash and Ramsey inflation rates? (4) History depend-
ence: Is there evidence of carryover across sessions in agents’ forecasts of infla-
tion? (5) Inferior forecasting: Are there sometimes systematic average errors in
forecasting inflation? We answer yes to the first four questions and no to the last
one. The positive answer to the first question supports the “just do it” position, but
it is qualified by the positive answer to the second question.

The first two questions are inspired by Barro and Gordon (1983) and Sargent
(1999). Barro and Gordon describe a reputational equilibrium that can sustain 
repetition of the Ramsey outcome. Sargent points out that Phelps’s (1967) control
problem for the monetary authority under adaptive expectations for the public even-
tually leads the monetary authority close to Ramsey outcomes. However, Sargent
also shows that repetition of the Nash equilibrium outcome is self-confirming,2 and
the “mean dynamics” of least-squares learning on the part of the government drive
the system toward the self-confirming Nash equilibrium. The mean dynamics are
essentially a differential version of “best response dynamics.” They summarize and
formalize the forces alluded to in Kydland and Prescott’s heuristic sketch of an
adaptive learning process that causes the government to depart from the Ramsey
outcome and gradually approach the self-confirming Nash equilibrium outcome. We
call this process of moving away from a Ramsey outcome, however attained, toward
a Nash equilibrium “backsliding.”3

2 A self-confirming equilibrium is a regression of unemployment on inflation that reproduces itself under a 
government-decision problem that takes the regression as invariant under intervention and trades inflation for
unemployment. The statement in the text that the Nash equilibrium outcome is the unique, self-confirming
equilibrium must be qualified because it depends on a Phillips curve that regresses unemployment on infla-
tion. If its direction is reversed, the self-confirming equilibrium has an inflation outcome that is higher than
the Nash outcome. See Sargent (1999) for details.

3 John B. Taylor (see Solow and Taylor 1999) warns against backsliding because he believes standard time-
series tests of the natural-rate hypothesis will reject it if the persistence of inflation continues to decrease, as it
seems to have done in recent years in the United States.

Figure 2.1:  The Nash Equilibrium and 

Ramsey Outcome for the Kydland–Prescott Model

yA
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2. THE ENVIRONMENT

Our basic model is Kydland and Prescott’s. Let (Ut , yt , xt , xt ) denote the unem-
ployment rate, the inflation rate, the systematic part of the inflation rate, and the
public’s expected rate of inflation, respectively. The policymaker sets xt , the 
public sets xt , and the economy determines outcomes (yt , Ut ). 

The data are generated by the natural unemployment rate model

(2.1a) Ut = U* – θ (yt – xt ) + v1t

(2.1b) yt = xt + v2t

(2.1c) xt = xt ,

where θ > 0, U* > 0, and vt is a (2 x 1) i.i.d. Gaussian random vector with 
EVt = 0, diagonal contemporaneous covariance matrix, and Evjt

= σvj. Here U*

is the natural rate of unemployment and –θ is the slope of an expectations-
augmented Phillips curve. According to (2.1a), there is a family of Phillips curves
indexed by xt . Condition (2.1b) states that the government sets inflation up to a
random term, v2t. Condition (2.1c) imposes rational expectations for the public
and embodies the idea that private agents face a pure forecasting problem: Their
payoffs vary inversely with their squared forecasting error. System (2.1) embod-
ies the natural unemployment rate hypothesis: Surprise inflation lowers the
unemployment rate, but anticipated inflation does not.

2.1. Nash and Ramsey Equilibria and Outcomes

The literature focuses on two equilibria of the one-period model. Both equilibria
assume that the government knows the correct model. Called the Nash and the
Ramsey equilibria, they come from different timing protocols. The Ramsey outcome
is better than the Nash outcome, symptomatic of a time-inconsistency problem. 

To define a Nash equilibrium, we need

DEFINITION 2.1:A government’s best response map, xt = B(xt ), solves the problem

(2.2) min E (U t + y t )
xt

subject to (2.1a) and (2.1b), taking xt as given. The best response map is

xt =   U* +   xt.

A Nash equilibrium incorporates a government’s best response and rational
expectations for the public.

^

^

^

θ
θ2 +1

θ2

θ2 +1

^

^

^

^

2

^

2 2

2
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DEFINITION 2.2: A Nash equilibrium is a pair (x, x) satisfying x = B(x) and 
x = x. A Nash outcome is the associated (Ut, yt ).

DEFINITION 2.3: The Ramsey plan xt solves the problem of minimizing (2.2) sub-
ject to (2.1a), (2.1b), and (2.1c). The Ramsey outcome is the associated (Ut, yt) .

A Ramsey outcome dominates a Nash outcome. The Ramsey plan is xt = xt = 0,
and the Ramsey outcome is Ut = U*– θv2t + v1t, yt = v2t . The Nash equilibrium is xt
= xt = θU,* and the Nash outcome is Ut = U* – θv2t + v1t = θU* + v2t . The addition
of constraint (2.1c) on the government in the Ramsey problem makes the government
achieve better outcomes by taking into account how its actions affect the public’s
expectations. The superiority of the Ramsey outcome reflects the value to the 
government of committing to a policy before the public sets expectations.

3. REPETITION

We design our experiments to implement an infinitely repeated version of the
Kydland–Prescott economy. The objective of the monetary authority is to maximize

(3.1) J = – E0 (1 – δ) Σ δt (U t + y t ), δ ∈ (0,1).

The objective of private agents continues to be to minimize the error variance
in forecasting inflation one period ahead.

Three types of theories apply to this setting.
(i) Subgame perfection. Reputational macroeconomics, also called the theo-

ry of credible or sustainable plans,4 studies subgame perfect equilibria
with history-dependent strategies. The theory discovers a set of equilibri-
um outcomes. For a large enough discount factor δ, this set includes one
that repeats the Ramsey outcome forever and others that sustain worse
than the one-period Nash outcome. One sensible reaction is that because
it contains so many possible equilibria, the theory says little empirically. 

(ii) Adaptive expectations (1950s). Suppose the government believes that the
public forms expectations by Cagan–Friedman adaptive expectations:

(3.2) xt = (1 – λ) yt + λxt

or xt = (1 – λ) Σ λ jyt–j–1, where λ ∈ (0,1). 

A version of Phelps’s (1967) control problem is to maximize (3.1)

subject to (2.1a), (2.1b), and (3.2). 

∞

t=0

∞

j=0

^

^

4 See Stokey (1989) for a brief survey and Sargent (1999) for an application to the current problem.

^
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The solution to this problem is a feedback rule,

(3.3) xt = f1 + f2xt.

With a high enough discount factor, the coefficients in (3.3) take values
that make the government eventually push inflation toward the Ramsey
outcome. Cho and Matsui (1995) refine this idea in the context of a broad
class of expectations-formation mechanisms for the public that satisfy the
same “induction hypothesis” that adaptive expectations exhibit: If sus-
tained long enough, a constant inflation rate will eventually come to be
expected by the public.5

(iii) Adaptive expectations (1990s). Sargent (1999) shows that a self-
confirming equilibrium (see Fudenberg and Levine 1993) of the
Kydland–Prescott model yields the pessimistic Nash equilibrium outcome.
Sims (1988), Sargent (1999), and Cho, Williams, and Sargent (2001) per-
turb the behavior rules of that self-confirming equilibrium by imputing to
the policymaker doubts about model specification, which cause him to use
a constant-gain learning algorithm. Those papers show the resulting model
has both “mean dynamics,” usually propelling it toward the self-confirm-
ing equilibrium, and “escape dynamics,” occasionally expelling it toward
the Ramsey outcome. Sample paths display recurrent, abrupt stabilizations
prompted by the monetary authority’s experimentation-induced discovery
of an approximate natural-rate-hypothesis government, followed by grad-
ual backsliding toward the (inferior) self-confirming equilibrium.

4. EXPERIMENTS

4.1. Design

A group of N + 1 students composes the economy; we set N equal to 3, 4, or 5. The
first N students form the public. Their decision is to forecast the inflation rate for
each period of the experiment. Call agent i’s forecast xit and let xt be the average of
the citizens’ forecasts. Citizens receive payoffs that rise as their session-average
squared forecast errors fall. Agent i’s payoff at the end of time period t is given by

–.5 (yt – xi,t )2.

Student N + 1, chosen at random at the beginning of an experiment, is the 
policymaker. Each period, student N + 1 sets a target inflation rate, xt. A random
number generator sets v2t and the actual inflation rate equals yt = xt + v2t.

^

5 Cho and Matsui (1999) study a version of the repeated model with alternating choices by the government and the
public. They find that, depending on relative discount factors, the one-period Nash outcome is excluded in an equi-
librium outcome, and a narrow range of outcomes near Ramsey can be expected under some parameter settings.
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Unemployment is then generated by the Phillips curve (2.1a). Student N + 1’s 
payoff varies inversely with the session average of U t + y t and is given by

–.5 (U t + y t ).

The same student remains the policymaker throughout all sessions within a 
single experiment. Sessions within an experiment are separated by a stopping time.

4.2. Knowledge

The policymaker knows the true Phillips curve (2.1); the existence of private agents
who are trying to forecast its action; and the histories of outcomes (yt , Ut ) in the
current experiment up to the current time. The private forecasters know the history
of inflation and unemployment, including prior sessions of the current experiment.
At the beginning of the economy, there is no history. The private forecasters do not
know the structure of the economy. They know that a policymaker sets inflation up
to a random term.6

4.3. Physical Details

Subjects sat at computer terminals and were isolated from one another. They
received written instructions at the beginning of each experiment. Appendixes A and
B reproduce the instructions. All experiments were conducted at the microcomput-
er lab of Simon Fraser University, in Burnaby, Canada. Subjects were undergradu-
ate economics majors at Simon Fraser University. They were recruited for two-hour
experiments but were not told in advance how many sessions would be played 
during each experiment. No subject was used in more than one experiment.

We conducted a total of 12 experiments, three in April 1998 and nine between
February and April 1999.

4.4. Stopping Rule

We followed Duffy and Ochs (1999) and Marimon, McGrattan, and Sargent (1990)
in using a random stopping rule to implement an infinite horizon and to 
discount future payoffs with the discount factor δ ∈ (0,1). At the end of each peri-
od, the computer program drew a random number from a uniform distribution over
[0, 1]. If this random number was less than δ, the experimental session would 
continue for one more period. If the number was greater than δ, the session was 
terminated. An upper bound on the duration of an individual session was set at 100
time periods.

2

2

6 The experiments implement the environment described by Kydland and Prescott (1977), in which the govern-
ment knows the model. Our assumptions about what the government and private forecasters know differ from
those in Sargent (1999) and Cho, Williams, and Sargent (2002), where the private agents know the govern-
ment’s rule for setting the predictable part of inflation, and the government does not know the true Phillips
curve model but estimates a nonexpectational Phillips curve.

^

2

2
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4.5. Earnings

Subjects received a $10 payment (Canadian funds) for completing a two-hour
experiment. They also could earn an additional $10 prize,7 determined in the fol-
lowing way: At the end of each experimental time period, the number of period
points was calculated by adding 100 points to the subject’s payoff. If this number
was less than 0, it was truncated to 0. Then the number of total points was calculat-
ed by adding all period points earned in a session. Finally, the number of maximum
points was calculated as the product of 100 and the number of session periods. 
At the end of a session, a probability of winning the prize, πwin, was computed as
the ratio between the total points and the maximum points.

Once an experiment was over, the computer program chose one of the sessions
at random and chose a number, rand, from a uniform distribution over [0, 1]. If πwin
of the selected session was greater than rand, the subject earned an additional $10.
The parameter values used in the experiments were U*= 5, θ = 1, and the 
discount parameter was δ = 0.98. Two sets of values of the noise standard deviation
σ were used, σ ≡ σ1 = σ2 = 0.3. In addition to the setting of σ, an information 
variable (yes or no) recorded whether the policymaker had been told the value of xt
from the previous period.8

Each experiment was labeled an “economy” and consisted of a set of sessions
with the same policymaker and group of forecasters. Each economy had several
sessions. Table 4.1 summarizes the treatment variables across economies.9

7 We used a version of the Roth–Malouf (1979) binary lottery to determine actual cash payments with the 
intention to control for subjects’ differing attitudes toward risk.

8 We used two alternative scales for the payoffs for the forecasters. For experiments 1–8, we used –.5(yt – xit)2,
while for experiments 9–12, we used –5 (yt – xit)2. The second scale was introduced to increase the weight of poor 
forecasts in the calculation of πwin.

9 In table 4.1, (*) denotes (no, yes, yes), (**) denotes (no, yes), and (***) denotes (no, yes, yes) in successive sessions.

Experiment Sessions Information σ N

1 3 * .03 4
2 2 ** .03 4
3 3 *** .3 5
4 2 yes .3 3
5 2 yes .3 4
6 9 yes .3 4
7 6 yes .3 4
8 9 yes .3 4
9 4 yes .3 4
10 2 yes .3 4
11 9 yes .3 4
12 9 yes .3 4

Table 4.1:  Design of Experiments

^

^
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5. OUTCOMES

Tables 5.1, 5.2, and 5.3 and figures C1–17 describe the outcomes. Each economy
corresponds to one set of N + 1 students. Figures C14–17 contain evidence about
the heterogeneity of the citizens’ expectations of inflation. Each economy contains
several sessions, determined by the realization of a random variable that terminat-
ed the session. The panels in figures C1–12 correspond to different sessions with
the same group of students.

Table 5.1 reports the means and standard deviations of  xt, xt, yt, Ut, 
– .5 (U t + y t ) across all sessions for each group. For the parameter values U* = 5
and θ = 1, the population values for these variables at the Nash equilibrium are 5,
5, 5, 5, and –25. For the Ramsey outcome, the values are 0, 0, 0, 5, and –12.5. 

5.1. Patterns

Table 5.2 summarizes the patterns in figures C1–17. The column labels represent
the following: “Ramsey” indicates the policymaker pushes the system to Ramsey
at least for a substantial length of time (see figures C1 and C2 for economies 1 and
2). “Backsliding” indicates a resurgence of inflation after having attained Ramsey
(see figures C3 and C6). “Other focal” indicates sustained inflation at values dis-
tinct from the Ramsey or Nash inflation (see figure C9). “Experimentation” indi-
cates the presence of episodes in which the monetary authority seems to be engag-
ing in purposeful experimentation. “Rank” denotes the rank order of the experi-
ments in terms of the economywide average payoff for the monetary authority. An
“x” signifies strong evidence for the pattern in question, a “y” signifies weaker evi-
dence, and a blank signifies no evidence. Table 5.3 reports the results of regressions
of inflation and the government payoff, respectively, on a constant and a dummy
that takes value 0 in the first half of an experiment and 1 in the second half, where
the second half is defined as the last N/2 sessions if N is even and N – 1/2 sessions
if N is odd. The table reports regression coefficients with standard errors in paren-
thesis; an asterisk denotes statistical significance at the 5 percent level. We sum-
marize the main features of the results as follows. 

• Figures C1–12 indicate that, on average, the public’s forecasts of inflation
are good and do not contain systematic forecast errors.

• In 9 of the 12 experiments, the policymaker pushes inflation near the
Ramsey value for many periods. 

• Backsliding occurs in 4 of 12 economies.
• Table 5.3 indicates that inflation falls and government payoffs rise during

the second half of 10 of the 12 experiments; the decrease in inflation is
statistically significant in 9 of the 12 experiments. 

• The policymaker experiments in 3 of 12 economies. 

^

2 2
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Economy x x y U Gov. payoff
Nash 5 5 5 5 –25

Ramsey 0 0 0 5 –12.5
1 4.1173 4.1497 4.1125 5.0381 –22.4196

(1.5267) (1.4923) (1.5298) (.4671) (5.2823)
2 1.4937 1.5047 1.4888 5.0183 –16.5486

(2.2521) (2.2286) (2.2522) (0.8135) (7.2296)
3 1.1266 1.1455 1.1162 5.0263 –14.0370

(1.1115) (1.0726) (1.1347) (0.5334) (3.1575)
4 1.3326 1.4218 1.2930 5.1438 –14.5550

(0.7794) (0.8094) (0.8360) (0.5383) (2.8898)
5 2.0143 2.2536 1.9998 5.2495 –18.0040

(1.7884) (1.7682) (1.8025) (1.1115) (7.5711)
6 1.9196 2.0600 1.9086 5.1636 –21.4142

(2.8144) (2.3279) (2.8319) (2.1278) (26.5034)
7 1.3561 1.4444 1.3080 5.0956 –14.7334

(1.1482) (1.1892) (1.1962) (0.6071) (3.8102)
8 0.7879 0.8354 0.7582 5.0545 –13.5492

(0.7897) (0.9031) (0.8551) (0.4979) (3.0613)
9 5.8802 5.8129 5.8274 4.9490 –31.8680

(1.9699) (1.7939) (1.9725) (1.1919) (8.7549)
10 2.4640 2.5443 2.4158 5.1006 –20.8438

(2.4087) (2.0490) (2.4543) (1.9718) (11.6304)
11 3.6396 3.6664 3.6158 5.0216 –19.7498

(0.7379) (0.7217) (0.7873) (0.7706) (4.6579)
12 2.6957 2.7048 2.6659 5.0161 –18.8765

(1.7212) (1.1878) (1.7263) (1.5879) (15.8123)

Table 5.1:  Means and Standard Deviations of Outcomes

Table 5.2:  Patterns of Results

Economy Ramsey Backsliding Other focal Experimentation Rank
1 x 11
2 x 5
3 x x 2
4 x 3
5 x x x 6
6 x x y x 9
7 x 4
8 x 1
9 y 12
10 x x x 10
11 x 8
12 x 7

^
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• Economy 9 has a bad or indifferent policymaker. He attains an average
payoff level worse than that associated with the Nash outcome—the only
policymaker to fall short of the Nash outcome. 

• Most of the transitions from Nash to Ramsey are smooth. Few (if any)
have the drama of the Volcker-like rapid disinflations produced by the
escape-route dynamics of Cho, Williams, and Sargent (2002) and Sargent
(1999). Depending on parameter values, they could resemble a pattern
predicted by Phelps (1967) and Cho and Matsui (1995). However, the 
stabilizations are too slow to be explained in this way, at least if policy-
makers are assumed to know the rate at which the public is adapting its
expectations. 

• Heterogeneity of expectations across citizens is largest at the beginning of
an experiment. It also tends to grow at the start of a new session within an
experiment.

Table 5.3:  Inflation and Government Payoff on Second-Half Dummy

Economy Inf. incpt Inf. dummy Gov. incpt Gov. dummy
1 4.5637 –2.8665* –23.7411 8.4138*

(0.0882) (0.2226) (0.3396) (0.8571)
2 3.8583 –3.8385* –22.3969 9.4744*

(0.1596) (0.2031) (0.7084) (0.9017)
3 1.3255 –1.0571* –14.1841 0.7430

(0.0829) (0.8164) (0.7084) (0.9017)
4 1.6127 –0.9593* –15.1001 1.6353*

(0.0819) (0.1419) (0.3251) (0.5631)
5 3.1016 –1.9891* –21.4088 6.1463*

(0.1917) (0.2576) (0.8823) (1.1854)
6 1.9549 –0.2388 –21.9732 2.8805

(0.1356) (0.3079) (1.2692) (2.8811)
7 1.6024 –0.9722* –15.0774 1.1365*

(0.0840) (0.0931) (0.2088) (0.3323)
8 0.8524 –0.2388* –13.9437 0.9993*

(0.0585) (0.0931) (0.2088) (0.5195)
9 5.4664 1.0468 –30.7858 –3.1381

(0.1658) (0.2824) (0.7498) (1.2769)
10 2.8456 –1.2428* –21.8264 2.8410

(0.2562) (0.4357) (1.2431) (2.1137)
11 3.4265 0.3872 –18.8962 –1.7463

(0.0533) (0.0763) (0.3199) (0.4576)
12 3.1043 –1.1103* –19.0925 0.5472

(0.1132) (0.1802) (1.0925) (1.7388)
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6. ADAPTIVE EXPECTATIONS

To check whether the results confirm the predictions of the Phelps (1967) problem,
we estimated the parameter λ in the adaptive-expectations model (3.2). 
We estimated the model for each individual within an experiment, pooling across
sessions,10 and for the average of households within an experiment, pooling across
sessions.11 For econometric reasons, we wrote the model in the form 

(6.1) xt = (1 – λi ) Σ λ j
i yt–j + ηi λt

i + uit,

where uit is a random disturbance with mean zero that is orthogonal to yt–1–j
for j = 0, ..., t – 1, and η is the systematic part of the initial condition (see Klein
1958). We estimated (6.1) by maximum likelihood, assuming a Gaussian distribu-
tion for uit. For each individual, we pooled across sessions, estimating a common
λi but a different, session-specific ηi for each session. For the average of forecasts
across individuals, xt , we proceeded in a similar way, estimating a common λ
across sessions as well as session-specific η’s.

Table 6.1 shows the estimates of λ,12 most of which are below .5, indicating
that most citizens formed forecasts by heavily overweighting the recent past. In the
next section, we will study whether policymakers can be viewed as solving a
Phelps problem in light of this rapid adjustment. 

6.1. Adaptive Expectations with Heteroskedasticity

Tables 6.2 and 6.3 summarize some of the results of re-estimating the adaptive-
expectations model (6.1) by maximum likelihood while allowing the variance of
the disturbance uit to vary across the two halves of an experiment, defined the same
way as table 5.3.13 Table 6.3 reports estimates of the variances across the two
halves, denoted ,   , respectively, as well as an estimate that imposed
homoskedasticity across the two halves. An asterisk by denotes the difference
across the two halves is statistically significant at the 5 percent level, according 
to a Chi-square test. In most experiments and for most of the private agents, the
variance of uit fell across the two halves of an experiment. 

6.2. Phelps Problem

In the row labeled L.S., table 6.4 records least-squares estimates of the govern-
ment’s rule (3.3). In the row labeled Phelps, the table also reports the rule that
solves the Phelps problem for δ = .98 and the value of λ from table 6.1 for the 

^

j=0

t–1

10 Thus, there is one λi for each subject.
11 Here there is one λ for each experiment for each individual.
12 In experiment 3, there is a fifth private agent. His/her estimate of λi is .2303 (.0314) with an R2 of .9938.
13 There is a fifth agent in experiment 3, with estimated λ = .2310 (.0276). For the fifth agent, we estimated 

σ2 = .0168,  = .0199, = .0097. The difference in disturbance variances across halves is not statistically 
significant at the .05 level.
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Table 6.1:  Estimates of λi in (6.1)

Exp. Agent 1 Agent 2 Agent 3 Agent 4 Average
1 λ 0.1395 0.0942 0.3136 0.1618 0.1896

s.e. (0.0350) (0.0828) (0.0549) (0.0436) (0.0322)
R2 0.9983 0.9919 0.9952 0.9972 0.9986

2 λ 0.1698 0.1366 0.2501 0.0007 0.1950
s.e. (0.0915) (0.0885) (0.0506) (0.0015) (0.0382)
R2 0.9475 0.9736 0.9656 0.9692 0.9912

3 λ 0.3278 0.4007 0.3363 0.4627 0.3556
s.e. (0.0649) (0.0452) (0.0381) (.0359) (0.0278)
R2 0.9737 0.9809 0.9897 0.9862 0.9938

4 λ 0.7345 0.3849 0.2635 0.4126
s.e. (0.0805) (0.0641) (0.0638) (0.0547)
R2 0.9755 0.9852 0.9820 0.9893

5 λ 0.5059 0.3644 0.2605 0.7918 0.5006
s.e. (0.0493) (0.0609) (0.0605) (0.0343) (0.0360)
R2 0.9569 0.9498 0.9539 0.9092 0.9846

6 λ 0.8413 0.7829 0.7059 0.6335 0.7452
s.e. (0.0232) (0.0635) (0.0147) (0.0292) (0.0137)
R2 0.7844 0.5853 0.8761 0.8569 0.9461

7 λ 0.2585 0.3362 0.7562 0.3124 0.4160
s.e. (0.0409) (0.0295) (0.0368) (0.0505) (0.0746)
R2 0.9840 0.9929 0.6209 0.9801 0.9692

8 λ 0.4893 0.4200 0.2788 0.3632 0.3935
s.e. (0.0370) (0.0329) (0.0014) (0.0048) (0.0236)
R2 0.9544 0.9691 0.9696 0.9769 0.9872

9 λ 0.5649 0.1233 0.2662 0.2073 0.3392
s.e. (0.0214) (0.0730) (0.0405) (0.0503) (0.0201)
R2 0.9960 0.9907 0.9940 0.9875 0.9983

10 λ 0.1300 0.2877 0.4176 0.6609 0.3800
s.e. (0.0476) (0.1145) (0.0322) (0.0438) (0.0442)
R2 0.9368 0.4668 0.9667 0.9151 0.9393

11 λ 0.4796 0.4856 0.5322 0.4378 0.5109
s.e. (0.0244) (0.0422) (0.1162) (0.0356) (0.0367)
R2 0.9966 0.9861 0.8596 0.9915 0.9888

12 λ 0.7083 0.0663 0.7136 0.4836 0.4776
s.e. (0.0366) (0.0222) (0.0476) (0.0410) (0.0264)
R2 0.8338 0.9533 0.9249 0.9255 0.9708
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averaged-across-individuals values of xt. The least-squares estimates of (3.3) show
the policymakers seem to have adjusted inflation downward too slowly relative to
the solution to the Phelps problem. In particular, the least-squares values of f2 are
always substantially larger than those associated with the optimal rule from the
Phelps problem. If policymakers are to be interpreted as solving a Phelps problem,
then they must be regarded as acting as though they think members of the public
adjust much more slowly (have higher λ) than they apparently do. 

Table 6.2:  Estimates of λi with Heteroskedasticity

Economy Agent 1 Agent 2 Agent 3 Agent 4 Average
1 λ 0.1107 0.0100 0.3409 0.0698 0.1374

s.e. (0.0229) (0.0073) (0.0473) (0.0433) (0.0203)
2 λ 0.1842 0.1645 0.3222 0.0364 0.2176

s.e. (0.0522) (0.0454) (0.0573) (0.0602) (0.0373)
3 λ 0.2675 0.4102 0.3312 0.4499 0.3616

s.e. (0.0508) (0.0444) (0.0408) (0.0344) (0.0277)
4 λ 0.5592 0.3642 0.2519 0.3727

s.e. (0.1141) (0.0564) (0.0586) (0.0548)
5 λ 0.5582 0.3690 0.2750 0.6021 0.5030

s.e. (0.0436) (0.0598) (0.0671) (0.0657) (0.0307)
6 λ 0.8220 0.0009 0.7153 0.7187 0.7571

s.e. (0.0183) (0.0815) (0.0156) (0.0347) (0.0154)
7 λ 0.2075 0.3321 0.3259 0.3076 0.3288

s.e. (0.0288) (0.0274) (0.0728) (0.0468) (0.0397)
8 λ 0.5618 0.4133 0.2981 0.3466 0.4087

s.e. (0.0264) (0.0327) (0.0347) (0.0317) (0.0207)
9 λ 0.5625 0.2461 0.3094 0.2021 0.3574

s.e. (0.0224) (0.0509) (0.0425) (0.0369) (0.0210)
10 λ 0.1639 0.3319 0.3958 0.6542 0.3866

s.e. (0.0478) (0.0744) (0.0327) (0.0438) (0.0458)
11 λ 0.4917 0.5969 0.4790 0.3748 0.5323

s.e. (0.0234) (0.0242) (0.0307) (0.0367) (0.0203
12 λ 0.8196 0.0169 0.7855 0.4647 0.4696

s.e. (0.0175) (0.0160) (0.0307) (0.0391) (0.0253)

^
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Economy Agent 1 Agent 2 Agent 3 Agent 4 Average
1 0.0321 0.1544 0.0906 0.0541 0.0265

0.0367 0.1816 0.1015 0.0622 0.0312
0.0085* 0.0165* 0.0330* 0.0182* 0.0043*

2 0.3784 0.1903 0.2476 0.2208 0.0635
1.1004 0.5318 0.6957 0.6105 0.2080
0.0034* 0.0042* 0.0057* 0.0043* 0.0017*

3 0.0659 0.0477 0.0257 0.0345 0.0154
0.0791 0.0499 0.0252 0.0303 0.0161
0.0141* 0.0389 0.0278 0.0515 0.0129

4 0.0574 0.0348 0.0421 0.0250
0.0713 0.0410 0.0492 0.0298
0.0343 0.0226 0.0283 0.0160

5 0.3089 0.3603 0.3304 0.6516 0.1102
0.4310 0.4824 0.3543 1.3211 0.1674
0.2168* 0.2635 0.3118 0.2209* 0.0649*

6 2.4741 4.7589 1.4214 1.6426 0.6182
2.6390 5.8032 1.6929 1.9862 0.7254
1.8053 0.4827* 0.3028* 0.3424* 0.1787*

7 0.0492 0.0198 1.1652 0.0613 0.0945
0.0666 0.0220 0.18567 0.0577 0.1396
0.0106* 0.0269 0.0238 0.0693 0.0135*

8 0.0574 0.0384 0.0380 0.0278 0.0153
0.0879 0.0440 0.0482 0.0332 0.0209
0.0131* 0.0298 0.0228* 0.0195* 0.0070*

9 0.1474 0.3448 0.2236 0.4676 0.0641
0.1823 0.5061 0.3063 0.6947 0.0901
0.0816* 0.0534* 0.0710* 0.0395* 0.0157*

10 0.7407 6.2520 0.3909 0.9958 0.7112
0.5203 8.9559 0.2525 0.8240 0.8237
1.1613 1.2152* 0.6536 1.3176 0.5013

11 0.0441 0.1870 1.8837 0.1137 0.1499
0.0377 0.3194 3.6244 0.0818 0.2655
0.0509 0.0567* 0.0740* 0.1487 0.0298*

12 1.6382 0.4612 0.7400 0.7296 0.2879
2.5643 0.6409 0.9146 0.5356 0.2661
0.3454* 0.2042* 0.4928* 1.0261 0.3213

Table 6.3:  Restricted vs. Unrestricted MLE
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Experiment f1 f2 n R2 λ
1 L.S. 0.0515 0.9798 191 0.9172 0.1896

s.e. (0.0944) (0.0214)
Phelps 0.0779 0.3655

2 L.S. 0.0672 0.9480 162 0.8800 0.1950
s.e. (0.0743) (0.0277)

Phelps 0.0785 0.3649
3 L.S. 0.0238 0.9627 202 0.8630 0.3556

s.e. (0.0425) (0.0271)
Phelps 0.0997 0.3504

4 L.S. 0.0349 0.9127 111 0.8984 0.4126
s.e. (0.0480) (0.0294)

Phelps 0.1099 0.3456
5 L.S. 0.1190 0.8410 139 0.6914 0.5006

s.e. (0.1373) (0.0480)
Phelps 0.1298 0.3386

6 L.S. 0.2215 0.8243 541 0.4649 0.7452
s.e. (0.1183) (0.0381)

Phelps 0.2509 0.3233
7 L.S. 0.0488 0.9051 251 0.8787 0.4160

s.e. (0.0398) (0.0213)
Phelps 0.1105 0.3453

8 L.S. 0.0771 0.8508 347 0.9467 0.3935
s.e. (0.0134) (0.0109)

Phelps 0.1063 0.3472
9 L.S. 0.5250 0.9213 203 0.7038 0.3392

s.e. (0.2564) (0.0422)
Phelps 0.0971 0.3519

10 L.S. 0.5248 0.7622 133 0.4204 0.3800
s.e. (0.2551) (0.0782)

Phelps 0.1038 0.3484
11 L.S. 1.1289 0.6848 401 0.4486 0.5109

s.e. (0.1420) (0.0380)
Phelps 0.1326 0.3378

12 L.S. 0.8612 0.6782 347 0.2191 0.4776
s.e. (0.2036) (0.0689)

Phelps 0.1240 0.3404

Table 6.4:  Estimates of Phelps Rule (3.3)
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7. SESSION DEPENDENCE 

Figures C1–12 display visual evidence of what we call “session dependence,” a ten-
dency of the monetary authority to set the systematic part of inflation equal to its value
at the end of the preceding session within an experiment. A regression of the begin-
ning-of-session setting of x against the previous session’s last setting of x, pooled
across sessions and experiments, shows there is some such tendency, but it is weak:

x1(j ) = 1.71 + .67xT ( j–1 ),

where standard errors are in parentheses, R2 = .14, x1( j ) is the first-period 
setting of x within session j ≥ 2, and xT (j–1) is the last-period setting of x within 
session j – 1. 

8. DISPERSION

Figure C13 displays sample variances of individual forecasts of inflation, xit ,
around average forecasts xt across sessions for each experiment. If there is a pat-
tern, it is for inflation diversity to fall, at least in early sessions of an experiment.
Figures C14–17 display time series of maxi xit – mini xit for each experiment.
Vertical lines denote inaugurations of new sessions. Generally, diversity of 
forecasts is highest at the beginning of an experiment, and there is some tendency
for increased dispersion at the inauguration of a new session within an experiment.
Only occasionally is there a within-session increase in dispersion. 

9. CONCLUDING DISCUSSION 

Before our experiments, we were skeptical that chanting “just do it” would solve
the time-consistency problem posed by an expectational Phillips curve. Our exper-
iments have softened but not fully arrested our skepticism. A supermajority of
experimental sample paths show the monetary authority gradually reaching for the
Ramsey value. This might reflect the “just do it” spirit. We think it probably reflects
a Phelps–Cho–Matsui monetary authority that imputes an “induction hypothesis”
(that is, adaptive expectations) to the private forecasters and that sets out to manip-
ulate private forecasts by its actions. However, there is a big gap between estimat-
ed feedback rules and those that would have been chosen by the optimal Phelps
planner, who knows the value of citizens’ adaptive expectations coefficient. Our
policymakers exploit the “induction hypothesis” too slowly, when they exploit it at

^
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all. There are more than enough deviations from Ramsey for us not to take
the solution of the time-consistency problem for granted. In addition to occasional
backsliding, our experimental economy can be stuck with an incompetent 
policymaker. 

APPENDIX A: INSTRUCTIONS FOR POLICYMAKERS

Today you will participate in an experiment in economic decisionmaking. Various
research foundations have provided funds for the conduct of this research. The
instructions are simple, and if you follow them carefully and make good 
decisions, you can earn up to $20, which will be paid to you in cash at the end of
this experiment. 

You will be assigned the role of a policymaker. In each period of the experi-
mental economy, your job will be to choose the target inflation rate. As a policy-
maker, you are concerned about the values of inflation and unemployment.
However, you can directly affect only the inflation rate.

You will play a series of experimental sessions. An experimental session will
consist of a number of experimental periods. At the beginning of each period of an
experimental session, you will be asked to choose the target inflation rate. The
actual inflation rate will then be determined by adding a stochastic shock to the 
target inflation rate. This reflects the fact that you, as the policymaker, do not have
complete control over the inflation rate. 

The stochastic shock is normally distributed and has the mean value equal to 0
and the standard deviation equal to 0.3. This means that approximately 68 percent
of the values of the shock will be between –0.3 and 0.3. In addition, approximate-
ly 95 percent of the values will be between –0.6 and 0.6. Almost all the values, 99.7
percent, will be between –0.9 and 0.9

At the beginning of each time period, private agents will forecast the inflation
rate for that time period. At the end of each experimental period, you will see the
average forecasted inflation rate (averaged over the forecasts of all private agents) on
your computer screen. You will also see the actual rate of inflation and the rate of
unemployment for that experimental time period. 

The actual inflation rate and the average forecasted inflation rate (averaged over
the expectations of private agents) play a role in determining the rate of unemploy-
ment in the economy. The rate of unemployment is calculated in the following way:

unemployment = u* – (inflation – average forecasted inflation) + shock,

where u* is the natural rate of unemployment, which prevails in the economy if the
actual rate of inflation is equal to average forecasted inflation rate; average expect-
ed inflation is the rate computed as the average of private agents’ expected rates;
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and shock is a stochastic shock normally distributed, with mean value 0 and the
standard deviation equal to 0.3.

At the end of every experimental period, you will also see the payoff that you
earned in that period. The payoff is calculated in the following way:

payoff = – 0.5 (inflation2 + unemployment2).

Thus, your payoff decreases with increases in both the inflation and 
unemployment rates.

At any given experimental period, the probability that the current session will
continue for one more period is equal to 0.98. Whether the session is played for one
more period is determined in the following way: A random number between 0 and
1 is drawn from a uniform distribution. If the number is less than or equal to 0.98,
the current session continues into the next period. If the number is greater than
0.98, the session is over. This number will appear in the last column of your screen
at the end of each experimental time period. Once the randomly drawn number is
greater than 0.98, the session will automatically be terminated.

You will start every experimental session by running a computer program. The
experimenter will give you the name of the program. Once you start the program,
you will be prompted to enter the session number. You will enter these numbers in
the consecutive order, starting with 1 for the first session, 2 for the second, etc.
After entering the session number, you will be prompted to enter the probability
that a particular session will end at any given experimental time period. Enter the
number 0.98 for this question. Once you have answered these two questions, an
experimental session will begin. 

Earnings

The experiment will last two hours. If you complete this two-hour experiment, you
are guaranteed to receive a $10 payment. Moreover, you can earn an additional
$10, for a total of $20. 

At the end of each session, the probability of winning a prize of an additional
$10 will be computed in the following way.

1. For every time period of the session, the number of period points is calcu-
lated by adding 100 points to the payoff you obtained in that time period.

2. The number of total points is calculated by adding the period points
earned in all time periods of a given experimental session. If this number
is less than 0, it is set equal to 0.

3. The number of maximum points is calculated by multiplying the total
number of periods of the session by 100. This number is the number of
total points that you would earn in an experimental session if your payoff
were equal to 0 in every experimental period. 
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4. The probability of winning the prize is then calculated in the following
way: 
1 – (maxpoints – total points) / maxpoints.

Table A1 presents an example of how the total points, maxpoints, and the
probability are calculated in a hypothetical experimental session. The
length of the session is five experimental periods. 

maxpoints = 100 x 5 periods = 500

Thus, the probability of winning the prize in this session is

1 – (500 – 318.72)\500 = 0.64.

Higher values of your payoff in each time period (lower in absolute terms)
result in higher period and total points. Higher values of total points
result, in turn, in higher probability of winning the prize.

5. If your total points happen to be less than zero, then your probability of
winning the prize in that session is set equal to zero. 

At the end of the experiment, one of the sessions that you played will be 
randomly selected. Each session will have an equal chance of being selected. The
session will be selected by running the program draw.exe at the DOS prompt.

Once you type draw and press enter, you will be asked to enter your ID num-
ber. Your ID number as the policymaker is 5. Once you have entered it, you will be
prompted to enter the total number of sessions played in the experiment. When you
enter this number, the computer will randomly choose a number between 1 and the
number of sessions played. This number will appear on your computer screen and
will indicate the number of the selected session.

The second number that will appear will be a number between 0 and 1, rand,
drawn from the uniform distribution. You will take that number and compare it to
the probability of winning the prize for the selected session. If rand is less than or

Period Payoff Period points

1 –20.25 79.75
2 –115.25 –15.25
3 –5.16 94.84
4 –10.37 89.63
5 –30.25 69.75

Total points 318.72

Table A1




